
International Journal of Computer Trends and Technology Volume 72 Issue 9, 120-125, September 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I9P118 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

AI Agentic Scriptless Automation in Software Testing

Ganesh Viswanathan

3530 Alister Ave SW, Concord, NC, USA.

Corresponding Author : cool.ganesh.v@gmail.com

Received: 01 August 2024 Revised: 31 August 2024 Accepted: 23 September 2024 Published: 30 September 2024

Abstract - Software testing is a critical phase in the software development lifecycle, yet traditional test automation approaches

remain time-consuming, resource-intensive, and reliant on deep technical expertise. Script-based automation frameworks

demand continuous maintenance as application changes occur, often leading to inefficiencies and flakiness in modern agile

development environments. In response, scriptless automation has transformed software testing by introducing high-level

interfaces that simplify the automation process. Unlike conventional automation, which depends heavily on scripting, scriptless

automation offers a more accessible, maintainable approach through visual modeling, keyword-driven testing, and data

abstraction. This paper provides a comprehensive technical overview of scriptless automation, detailing its architecture, core

components, and integration with CI/CD pipelines. It highlights the benefits of scriptless automation, such as reduced complexity,

ease of maintenance, and faster adaptation to changing software environments, while also addressing its limitations. The

discussion then moves to the next evolutionary step in software testing: leveraging autonomous AI agents to manage the creation,

execution, and maintenance of test cases without human intervention. This AI-driven approach offers significant advantages,

including reduced testing cycles, enhanced test coverage, accelerated time to market, and improved collaboration between

technical and non-technical teams. In addition, the paper explores real-world implementations of AI-driven scriptless

automation, examining both the merits and challenges of deploying this cutting-edge technology in diverse software

environments. The insights presented will enable organizations to optimize their testing strategies and improve the quality and

speed of software delivery in an increasingly complex digital landscape.

Keywords - Continuous integration, Keyword-driven testing, Scriptless automation, Software testing, Test automation, AI agents,

Autonomous testing, Application under test, Continuous deployment.

1. Introduction
The rapid evolution of software development

methodologies, particularly Agile and DevOps, has placed

unprecedented demands on testing processes. Continuous

integration and delivery (CI/CD) pipelines require fast,

reliable, and scalable test automation. However, traditional

test automation is often ill-suited to meet these demands due

to its reliance on complex scripting, high maintenance

overhead, and the need for specialized technical skills.

As applications evolve, the frequent updates and

modifications required to maintain test scripts become both

time-consuming and error-prone, often causing automation to

become a bottleneck rather than an enabler of agility. This

challenge is further exacerbated by the fact that traditional

automation frameworks are rigid and unable to keep pace with

the dynamic nature of modern software development. Each

code change may require manual updates to the test scripts,

introducing delays, inefficiencies, and increased costs.

Moreover, the high technical expertise required to create and

maintain scripts limits the involvement of non-technical team

members, creating a dependency on specialized testers. This

creates a significant research gap: the need for automation

tools that can adapt to changing application landscapes

without manual intervention while being accessible to a

broader range of users. Scriptless automation has emerged as

a solution to these challenges by eliminating the need for

detailed scripting. Using visual modeling, keyword-driven

frameworks, and data abstraction, scriptless tools simplify the

creation and maintenance of automated test cases. This

enables faster test case development, reduces maintenance

overhead, and allows for broader team involvement, including

business analysts and non-technical stakeholders. However,

despite its advantages, scriptless automation still requires

human oversight to execute, maintain, and adapt test cases,

particularly in response to application changes. To address this

problem, the next evolution in testing is AI-driven agentic

scriptless automation. This approach integrates autonomous

AI agents with scriptless frameworks, allowing the

automation to become self-sustaining, adaptive, and

intelligent. AI agents can dynamically generate, execute, and

maintain test cases without the need for constant human

intervention, enabling true continuous testing. By leveraging

machine learning and other AI techniques, these agents can

respond to changes in the application, self-heal failing test

cases, and ensure comprehensive test coverage. This evolution

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Ganesh Viswanathan / IJCTT, 72(9), 120-125, 2024

121

promises to bridge the gap between the limitations of

traditional and scriptless automation, enhancing efficiency,

improving test accuracy, and accelerating the overall

development process. This paper addresses the research gap

by exploring the technical underpinnings of scriptless

automation and introducing the concept of autonomous AI-

driven testing agents. It delves into the architecture,

operational mechanics, and integration of this approach within

modern CI/CD environments, offering a glimpse into the

future of truly intelligent, self-sustaining test automation.

Fig. 1 Architecture of scriptless automation tools

2. Scriptless Automation: Technical Overview
2.1. Architecture of Scriptless Automation Tools

At the core of scriptless automation tools is a multi-

layered architecture designed to decouple test logic from the

underlying application code. This architecture typically

includes:

• Presentation Layer: A User Interface (UI) that allows

users to create and manage tests via drag-and-drop

operations, form-based inputs, or Natural Language

Processing (NLP).

• Keyword/Action Layer: A repository of pre-defined

keywords or action words that represent common test

operations (e.g., "Click," "Input Text," "Verify

Element"). These keywords are often parameterized to

handle dynamic data inputs.

• Execution Engine: The component responsible for

interpreting the high-level test instructions generated by

the user and converting them into executable actions

against the Application Under Test (AUT).

• Integration Layer: Interfaces for connecting with CI/CD

pipelines, test management systems, and version control

systems.

• Data Abstraction Layer: Handles test data management,

allowing users to define data-driven tests without

embedding data directly in test cases.

Presentation

Layer

AI Agent 2-

Prefatches data for

the fests

Input Test script written in
simple English

Agent Driver

Connects all
the

components

together

Script less test
automation

generation module

Test Executing on

application under test with

real test data triggered by
CI/CD

Result Generation
reporting and re-execution

AI Agent 1-Analyzes
application for HTML

DOM and creates a
map of AUT

AI Agent 3-Prepares the
test environment and

integration for execution

Script less Test Design

Execution

and decision-

making engine

Al Analytics
and feedback

layer

Feedback to
Diver

Feedback To agents

Execution
Engine

Data
Abstraction

Layer

RAG
database
of actions

Large language

model for text

interpretation

Integration
Layer

Autonomous

AI agent

layers

Keyword/Action

Layer

Ganesh Viswanathan / IJCTT, 72(9), 120-125, 2024

122

2.2. Architecture of Agentic Scriptless Automation Tools
AI agent-driven scriptless automation systems are built

on a multi-layered architecture, where autonomous AI agents

operate within a traditional scriptless automation framework

enhanced by AI capabilities. The additional components of

this architecture include:

• Autonomous AI Agent Layer: AI agents are the core of

this architecture. These agents are powered by advanced

machine learning models that enable them to understand,

adapt, and optimize test processes. The agents can

automatically generate, execute, and maintain test cases,

learning from past experiences to improve future testing

cycles. They can make decisions independently, such as

selecting the best test strategies or identifying the most

critical areas of the application under test.

• Execution and Decision-making Engine: The execution

engine is driven by AI agents that translate high-level

testing objectives into executable actions. This engine

interacts with various automation tools and frameworks,

executing tests across different environments. The AI

agents continuously monitor test execution, making real-

time decisions to optimize test coverage and execution

efficiency.

• AI Analytics and Feedback Layer: This layer utilizes AI

to analyze test data and generate insights. AI agents

continuously learn from the results of each testing cycle,

adapting future tests to improve coverage and accuracy.

This feedback loop ensures that the testing process

becomes more intelligent and efficient over time.

3. Key Technical Components
3.1. Visual Test Creation Interface

The visual interface of a scriptless automation tool is

typically designed as a web-based or desktop application that

offers drag-and-drop functionality. This interface often

includes advanced features like test case modeling, test data

binding, and error handling. Modern web frameworks

facilitate the development of scalable interfaces that

seamlessly integrate all underlying functions. These tools are

designed with drag-and-drop simplicity for basic users while

also providing IDEs for those requiring more advanced

capabilities. By abstracting the complexities, the interface

allows users to concentrate on defining the "what," leaving the

"how" to be efficiently managed by the underlying automation

engine.

3.2. Keyword-Driven Framework
Keywords are reusable methods or functions that

encapsulate specific test actions. They are implemented as a

combination of scripts and libraries within the tool. For

example, a "Click Button" keyword might locate the button

element and execute a click event using a browser driver. The

elements outlined above represent the core components of any

UI web application. Each of these entities is associated with a

defined set of actions, such as click, double-click, drag-and-

drop, set, delete, clear, submit, hover, activate, deactivate, and

more. By establishing interfaces for these actions, it is possible

to create a comprehensive keyword library that supports

automation across various web applications. In UI testing, the

process typically involves executing a sequence of actions on

these entities (test steps) and then validating the application's

state after those steps. With the defined keywords, action

methods can be used to carry out test steps, while entity state

methods determine the final states of UI elements. These states

can then be asserted and validated against expected results to

ensure the application under test is functioning correctly.

Windows Menus Controls

• Main window

• Child windows

• Pop-up

windows

• Dialog

windows

• Menu bars

• Drop-down

menu

• Context-aware

menu

•Buttons

• Text boxes

• Links

• Radio buttons

• Checkboxes

• Drop-down select

boxes

• Sliders

• Tabs

• Scroll bars

Fig. 2 Key technical components

3.3. Test Execution and Reporting
The execution engine processes keyword-driven

instructions and translates them into actionable steps. During

this process, it interacts with the Application Under Test

(AUT) using browser drivers, mobile testing tools, or API

testing tools. Several engines available today can perform this

conversion effectively.

They can be divided into 3 major categories:

3.3.1. HTML-DOM Driven Engines

Traditionally, HTML DOM manipulation has been the

foundation for interacting with web application elements.

Early automation tools used browser-specific DLLs to create

handles for these elements, controlling their behavior through

object methods. However, this approach was OS and browser-

dependent, often requiring extensive code for even simple

operations and lacking compatibility. The introduction of web

drivers marked a significant leap forward. These drivers

provided standardized interfaces for web elements, facilitating

code sharing and enabling the automation of any application

adhering to W3C standards. This led to the development of

open-source libraries and frameworks like Selenium, Appium,

Winium, Watir, Cypress, Playwright, Puppeteer, Robot

Framework, TestCafe, WebDriverIO, Nightwatch.js, and

Katalon Studio. These advancements propelled UI test

automation, and many scriptless tools began leveraging these

technologies. Even modern RPA tools like Automation

Anywhere, UiPath, Robocorp, and Blue Prism rely heavily on

Ganesh Viswanathan / IJCTT, 72(9), 120-125, 2024

123

these UI automation frameworks. Despite improvements, UI

tests remain fragile, as changes to the DOM during

deployments can render test suites obsolete, requiring constant

maintenance. Data management also poses a challenge, as UI

tests often interact with integrated systems, making it difficult

to maintain a consistent test data set. Artificial intelligence

offers a solution by optimizing and self-healing tests,

dynamically identifying the best XPaths for elements during

test execution. Scriptless automation tools abstract these

DOM complexities, providing simple wrapper functions that

reduce boilerplate code and expedite test automation.

3.3.2. Image Recognition Engines

Image recognition engines simulate user interactions by

recognizing on-screen elements rather than working directly

with the HTML DOM. Historically, these engines were slower

and more error-prone due to their dependence on screen

resolutions and were often used as fallback mechanisms to

DOM-driven engines. Tools like Applitools have challenged

this perception, establishing a market for image recognition

engines. Libraries such as Tesseract, AutoIT, and Sikuli have

further advanced this field. With the rise of large image

models like DALL-E, significant improvements in recognition

and the ability to respond dynamically to changes in

applications are expected. Scriptless automation tools now

include libraries that support image recognition tasks, offering

a rich set of methods for UI automation through visual cues.

3.3.3. API and Database Engines

With the advent of services, particularly microservices,

much of today’s business logic resides in middleware.

Traditionally, backend testing involved direct database

interactions using DB drivers, SQL queries, and assertions.

While this approach is still relevant, API testing has become

more prevalent. Libraries like Rest Assured and Requests,

along with tools like Postman, facilitate the testing of

middleware business logic. Scriptless automation tools

provide wrapper methods for the most common API and

database testing functions across a varied set of types and

platforms, streamlining the testing process across different

layers of an application.

Test results are captured in real-time and are visualized

through dashboards or exported into reports. All scriptless

automation tools offer customizable dashboards and API

integrations, allowing data to be pulled into other enterprise

repositories seamlessly again; this is another layer where AI,

specifically Gen AI, can help make sense of these reports and

provide actionable feedback to developers.

3.4. Autonomous Test Case Generation using AI Agent

AI agents are capable of autonomously generating test
cases by analyzing the AUT and user interaction patterns. This

capability reduces the need for manual test case creation and

ensures comprehensive test coverage that adapts to changes in

the application.

3.5. Adaptive and Self-Optimizing Agentic Testing

AI agents enable adaptive testing by dynamically

adjusting test cases and execution strategies based on real-time

data. These agents continuously optimize testing processes,

ensuring that tests remain relevant and effective as the

software evolves.

3.6. Real-Time Analytics and Predictive Feedback

AI agents provide real-time analytics, offering insights

into test performance, defect trends, and overall system

stability. Predictive analytics allow these agents to forecast

potential issues, enabling preemptive actions to be taken, thus

reducing the likelihood of critical defects reaching production.

4. Industry Leaders in AI-Driven Scriptless

Automation Today

Scriptless user interface automation is not a new concept

in the industry; it has been around for decades, beginning with

pioneers like Rational Robo, WinRunner, and Quick Test

Professional in the 1990s. These early tools were based on the

"record and playback" approach, where users manually guided

the tool to record interactions with the application.

However, recent advancements in AI and Generative AI

have significantly enhanced these tools, automating much of

the manual guidance that was once required. Today, several

leading tools are making strides in this space:

4.1. Testim

Testim uses AI to help automate the creation and

maintenance of test cases. It offers a scriptless interface where

users can create tests by interacting with the application, and

the AI engine helps in identifying, managing, and updating

elements in the application as it evolves. It also involves a self-

healing feature that is useful when application code changes

with deployments.

4.2. Test.ai

Test.ai focuses on mobile and web application testing,

using AI to generate and maintain test cases automatically. It

is particularly strong in understanding user interfaces and

adapting to changes.

4.3. Katalon Studio

Katalon Studio provides both script-based and scriptless

options; its AI-driven features make it a strong contender in

the scriptless testing space. It allows testers to create

automated tests through a visual interface, with AI assisting in

test creation and maintenance.

4.4. Leapwork

Leapwork is a no-code automation platform that allows

for creating test cases visually. It uses AI to assist in test

creation and handle dynamic elements in the UI, making it

easier to maintain tests.

Ganesh Viswanathan / IJCTT, 72(9), 120-125, 2024

124

4.5. Eggplant

Eggplant provides a model-based approach to test

automation, using AI to create and maintain tests. It supports

a wide range of platforms and applications, and its AI-driven

approach helps in reducing the maintenance overhead.

4.6. ACCELQ

ACCELQ is a cloud-based test automation tool that

focuses on AI-driven, scriptless testing. It offers a codeless

interface for test creation and uses AI to maintain tests as

applications evolve.

4.7. Applitools

Applitools takes a visual approach to software testing,

leading in automated visual testing and monitoring for web

and mobile applications. It focuses on the visual accuracy of

applications across different devices, browsers, and screen

sizes. By using AI and machine learning, Applitools can detect

visual bugs and discrepancies that traditional functional

testing might miss. This represents a significant shift from

traditional DOM-based testing and stands to benefit greatly

from the integration of multimodal AI models.

4.8. QA Wolf

QA Wolf distinguishes itself by taking a novel approach

to automated testing. It converts user traffic into automated

functional tests, incorporating analytics features to prioritize

test cases. This concept, while used in test data and

virtualization, is relatively new to test automation. QA Wolf’s

AI-native approach is designed to deliver rapid, scalable, and

maintainable tests. These tools demonstrate how scriptless

automation has evolved, integrating AI to streamline the

testing process, reduce maintenance, and improve the

adaptability of tests to changes in applications.

5. Integration with CI/CD Pipelines
One of the key advantages of scriptless automation is its

seamless integration with CI/CD pipelines. This integration is

achieved through plugins or API interfaces that allow CI/CD

tools to trigger test execution automatically. Key aspects

include pipeline configuration, environment management,

parallel execution, and continuous feedback. AI agents can

take this one level up by:

5.1. Self-Configuring Pipelines

AI agents can automatically configure and adjust CI/CD

pipelines to optimize test execution based on the latest code

changes and test results. This reduces the manual effort

required for pipeline management and ensures that testing

remains aligned with development objectives.

5.2. Intelligent Resource Management

AI agents manage resources intelligently, optimizing the

use of infrastructure for parallel test execution and ensuring

that tests are run efficiently and effectively. These agents can

predict resource requirements and allocate them dynamically.

5.3. Continuous Learning and Improvement

AI agents leverage continuous feedback from test results

to refine their strategies and execution plans. This learning

process ensures that testing becomes progressively more

effective and less resource-intensive over time.

6. Challenges and Limitations
Despite its advantages, scriptless automation has certain

limitations:

6.1. Limited Customization

Scriptless automation tools are generally optimized for

common testing scenarios. However, complex or highly

specialized test cases may require custom scripts or

extensions.

6.2. Performance Overhead

The abstraction layers in scriptless tools can introduce

performance overhead, particularly during test execution.

6.3. Tool Ecosystem Lock-In

Organizations may face challenges related to vendor lock-

in, as migrating test cases from one tool to another can be

difficult.

6.4. Learning Curve for Technical Users

Technical users accustomed to traditional scripting may

find the transition to scriptless tools challenging.

7. Future Directions
Scriptless automation is poised to evolve with

advancements in AI and ML. Future tools may incorporate AI-

driven test case generation, self-healing tests, and enhanced

analytics for predictive defect identification. Future AI agents

will have even more advanced decision-making capabilities,

enabling them to handle increasingly complex testing

scenarios with minimal human intervention. AI agents will be

applied to a broader range of use cases, including exploratory

testing, security testing, and performance optimization, further

expanding their utility in software development.

8. Conclusion
Scriptless automation represents a significant shift in the

approach to test automation, offering technical and business

benefits by reducing dependency on scripting, enhancing

collaboration, and accelerating test case creation. AI agent-

driven scriptless automation takes it one level up, offering

unparalleled efficiency, fault tolerance, self-healing, stability,

adaptability, and intelligence. While challenges remain, the

potential benefits of deploying autonomous AI agents in

testing processes are immense. However, it is not a one-size-

fits-all solution. Organizations must carefully consider their

specific needs before adopting scriptless automation.

Ganesh Viswanathan / IJCTT, 72(9), 120-125, 2024

125

References
[1] Aho Pekka et al., “Applying Scriptless Test Automation on Web Applications from The Financial Sector,” In Proceedings of the 25th

Conference on Software Engineering and Databases (JISBD 2021), 2021. [Google Scholar] [Publisher Link]

[2] Ganesh Gatla, Kanchan Gatla, and Balaji Vishwanath Gatla, “Codeless Test Automation for Development QA,” American Academic

Scientific Research Journal for Engineering, Technology, and Sciences, vol. 91, no. 1, pp. 28-35, 2023. [Google Scholar] [Publisher Link]

[3] Tanja E.J. Vos et al., “TESTAR-Scriptless Testing Through Graphical User Interface,” Software Testing, Verification and Reliability, vol.

31, no. 3, pp. 1-46, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[4] Takamasa Tanaka, Hidekazu Niibori, Li Shiyingxue, Shimpei Nomura, Tadayoshi Nakao, Kazuhiko Tsuda, “Selenium based Testing

Systems for Analytical Data Generation of Website User Behavior,” In 2020 IEEE International Conference on Software Testing,

Verification and Validation Workshops (ICSTW), pp. 216-221, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[5] Muneyoshi Iyama et al., “Automatically Generating Test Scripts for GUI Testing,” 2018 IEEE International Conference on Software

Testing, Verification and Validation Workshops (ICSTW), Västerås, Sweden, pp. 146-150, 2018. [CrossRef] [Google Scholar] [Publisher

Link]

[6] José Campos et al., “Continuous Test Generation: Enhancing Continuous Integration with Automated Test Generation,” In Proceedings

of the 29th ACM/IEEE International Conference on Automated Software Engineering, New York, USA, pp. 55-66, 2014. [CrossRef]

[Google Scholar] [Publisher Link]

[7] Gordon Fraser, and Andrea Arcuri, “A Large-Scale Evaluation of Automated Unit Test Generation Using Evosuite,” In Proceedings

PACM Transactions on Software Engineering and Methodology (TOSEM), vol. 24, no. 2, pp. 1-42, 2014. [CrossRef] [Google Scholar]

[Publisher Link]

[8] Lin Cheng et al., “GUICat: GUI Testing as A Service,” In Proceedings of the 31st IEEE/ACM International Conference on Automated

Software Engineering, Singapore, pp. 858-863, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[9] Maurizio Leotta et al., “Robula+: An Algorithm for Generating Robust Xpath Locators for Web Testing,” Journal of Software: Evolution

and Process, vol. 28, no. 3, pp. 177-204, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[10] Atif Memon, Ishan Banerjee, and Adithya Nagarajan, “GUI Ripping: Reverse Engineering of Graphical User Interfaces for Testing,” In

Proceedings of the 10th Working Conference on Reverse Engineering, Victoria, Canada, pp. 1-260, 2003. [Google Scholar] [Publisher

Link]

[11] N. Nyman, “Using Monkey Test Tools - How to Find Bugs Cost-Effectively Through Random Testing,” Software Testing & Quality

Engineering, pp. 18-21, 2000. [Google Scholar]

[12] Mirella Martínez, “Towards Automated Testing of The Internet of Things: Results Obtained with The TESTAR Tool,” In Proceedings

Leveraging Applications of Formal Methods, Verification and Validation. Distributed Systems, Springer, Cham, pp. 375-385, 2018.

[CrossRef] [Google Scholar] [Publisher Link]

[13] Tanja E. J. Vos, “Evolutionary Testing for Complex Systems,” ERCIM News, 2009. [Google Scholar] [Publisher Link]

[14] Ranorex, Functional UI Test Automation with Intelligent Test Design, 2024. [Online] Available: https://www.ranorex.com/

[15] Selenium, Selenium automates browsers. That's it!, 2024. [Online] Available: https://www.selenium.dev/

[16] RaiMan, Automate What You See on A Computer Monitor, Sikulix, 2024. [Online] Available: http://www.sikulix.com/

[17] Vivien Chinnapongse et al., “Model-Based Testing of GUI-Driven Applications,” Software Technologies for Embedded and Ubiquitous

Systems, Lecture Notes in Computer Science, pp. 203-214, vol. 5860, 2009. [CrossRef] [Google Scholar] [Publisher Link]

[18] Børge Haugset, and Geir Kjetil Hanssen, “Automated Acceptance Testing: A Literature Review and an Industrial Case Study,” Agile 2008

Conference, Toronto, ON, Canada, pp. 27-38, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[19] Faezeh Khorram, Jean-Marie Mottu, and Gerson Sunyé, “Challenges & Opportunities in Low-Code Testing,” Proceedings of the 23rd

ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings, no. 70, pp. 1-10,

2020. [CrossRef] [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?cluster=4585032409480976328&hl=en&as_sdt=0,5
https://riunet.upv.es/handle/10251/178254
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Codeless+Test+Automation+for+Development+QA&btnG=
https://core.ac.uk/download/pdf/553171459.pdf
https://doi.org/10.1002/stvr.1771
https://scholar.google.com/scholar?cluster=2204715998708699143&hl=en&as_sdt=0,5
https://onlinelibrary.wiley.com/doi/10.1002/stvr.1771
https://doi.org/10.1109/ICSTW50294.2020.00045
https://scholar.google.com/scholar?cluster=2204715998708699143&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/9155736
https://doi.org/10.1109/ICSTW.2018.00043
https://scholar.google.com/scholar?cluster=11985157108995763898&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/8411746
https://ieeexplore.ieee.org/document/8411746
https://doi.org/10.1145/2642937.2643002
https://scholar.google.com/scholar?cluster=14883141945263986649&hl=en&as_sdt=0,5
https://dl.acm.org/doi/10.1145/2642937.2643002
https://doi.org/10.1145/2685612
https://scholar.google.com/scholar?cluster=4428474690056896292&hl=en&as_sdt=0,5
https://dl.acm.org/doi/10.1145/2685612
https://doi.org/10.1145/2970276.2970294
https://scholar.google.com/scholar?cluster=5405605783958722528&hl=en&as_sdt=0,5
https://dl.acm.org/doi/10.1145/2970276.2970294
https://doi.org/10.1002/smr.1771
https://scholar.google.com/scholar?cluster=5405605783958722528&hl=en&as_sdt=0,5
https://onlinelibrary.wiley.com/doi/10.1002/smr.1771
https://scholar.google.com/scholar?cluster=6021590560172244748&hl=en&as_sdt=0,5
https://dl.acm.org/doi/abs/10.5555/950792.951350
https://dl.acm.org/doi/abs/10.5555/950792.951350
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Nyman+N.+Using+monkey+test+tools+%E2%80%93+how+to+find+bugs+cost-effectively+through+random+testing&btnG=
https://doi.org/10.1007/978-3-030-03424-5_25
https://scholar.google.com/scholar?cluster=2318037576044016357&hl=en&as_sdt=0,5
https://link.springer.com/chapter/10.1007/978-3-030-03424-5_25
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Vos+TEJ.+Evolutionary+testing+for+complex+systems&btnG=
https://ercim-news.ercim.eu/en78/rd/evolutionary-testing-for-complex-systems
https://doi.org/10.1007/978-3-642-10265-3_19
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Model-Based+Testing+of+GUI-Driven+Applications&btnG=
https://link.springer.com/chapter/10.1007/978-3-642-10265-3_19
https://doi.org/10.1109/Agile.2008.82
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automated+Acceptance+Testing%3A+A+Literature+Review+and+an+Industrial+Case+Study&btnG=
https://ieeexplore.ieee.org/abstract/document/4599450
https://doi.org/10.1145/3417990.3420204
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Challenges+%26+opportunities+in+low-code+testing&btnG=
https://dl.acm.org/doi/abs/10.1145/3417990.3420204

